Source: aholdencirm.files.wordpress.com/2018/12/leukemiawhitebloodcell.jpg |
Of the many different kinds of cancer that affect humans, leukemia is the most common in young people. As with many types cancer, doctors mostly turn to chemotherapy to treat patients. Chemotherapy, however, comes with its own share of issues, primarily severe side effects and the constant threat of disease recurrence.
Stem cell therapy treatment has emerged as a potential cure for some types of cancer, with leukemia patients being among the first groups of patients to receive this type of treatment. While exciting because of the possibility of a complete cure, stem cell therapy comes with its own challenges. Let’s take a closer look.
Leukemia is characterized by abnormal white blood cells (also known as the many different types of cells that make up our immune system) that are produced at high levels. Stem cell therapy is such an appealing treatment option because it involves replacing the patient’s aberrant blood stem cells with healthy ones from a donor, which provides the possibility of complete and permanent remission for the patient.
Unfortunately, in approximately half of patients who receive this therapy, the donor cells (which turn into immune cells), can also destroy the patients healthy tissue (i.e. liver, skin etc…), because the transplanted blood stem cells recognize patient’s tissue as foreign. While doctors try to lessen this type of response (also known as graft versus host disease (GVHD)), by suppressing the patient’s immune system, this procedure lessens the effectiveness of the stem cell therapy itself.
Now scientists at the University of Zurich have made an important discovery – published in the journal Science Translational Medicine – that could mitigate this potentially fatal response in patients. They found that a molecule called GM-CSF, is a critical mediator of the severity of GVHD. Using a mouse model, they showed that if the donor cells were unable to produce GM-CSF, then mice fared significantly better both in terms of less damage to tissues normally affected by GVHD, such as the skin, and overall survival.
While exciting, the scientists were concerned about narrowing in on this molecule as a potential target to lessen GVHD, because GM-CSF, an important molecule in the immune system, might also be important for ensuring that the donor immune cells do their jobs properly. Reassuringly, the researchers found that blocking GM-CSF’s function had no effect on the ability of the donor cells to exert their anti-cancer effect. This was surprising because previously the ability of donor cells to cause GVHD, versus protect patients from the development of cancer was thought to occur via the same biological mechanisms.
Most excitingly, however, was that finding that high levels of GM-CSF are also observed in patient samples, and that the levels of GM-CSF correlate to the severity of GVHD. Dr. Burkhard Becher and his colleagues, the authors of this study, now want to run a clinical trial to determine whether blocking GM-CSF blocks GVHD in humans like it does in mice. In a press release, Dr. Becher states the importance of these findings:
If we can stop the graft-versus-host response while preserving the anti-cancer effect, this procedure can be employed much more successfully and with fewer risks to the patient. This therapeutic strategy holds particular promise for patients with the poorest prognosis and highest risk of fatalitysource